Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46173
Título: Handwritten signatures recognizer by its envelope and strokes layout using HMM's
Autores/as: Sánchez, J. A.
Travieso, C. M. 
Alonso, I. G. 
Ferrer, M. A. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Handwriting recognition
Hidden Markov models
Automatic speech recognition
Karhunen-Loeve transforms
Fast Fourier transforms
Fecha de publicación: 2001
Publicación seriada: IEEE Annual International Carnahan Conference on Security Technology, Proceedings
Conferencia: 35th Annual International Carnahan Conference on Security Technology 
35th Annual 2001 International Carnahan Conference on Security Technology 
Resumen: A method for the automatic recognition of offline handwritten signatures using both global and local features is described. As global features, we use the envelope of the signature sequenced as polar coordinates; and as local features we use points located inside the envelope that describe the density or distribution of signature strokes. Each feature is processed as a sequence by a hidden Markov Model (HMM) classifier. The results of both classifiers are linearly combined, obtaining a recognition ratio of 95.15% with a database of 60 handwritten signatures.
URI: http://hdl.handle.net/10553/46173
ISBN: 0-7803-6636-0
Fuente: IEEE Annual International Carnahan Conference on Security Technology, Proceedings, p. 267-271
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

3
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 25-feb-2024

Visitas

104
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.