Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46168
Título: Handwritten digits parameterization for HMM based recognition
Autores/as: Travieso, Carlos M. 
Morales, Ciro R.
Alonso, Itziar G. 
Ferrer, Miguel A. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: handwritten character recognition
Fecha de publicación: 1999
Publicación seriada: IEE Conference Publication 
Conferencia: 7th IEE Conference on Image Processing and its Applications (IPA99) 
Proceedings of the 1999 7th International Conference on Image Processing and its Applications 
Resumen: Handwriting classification or recognition methods based on neural networks (NN) have been extensively studied and they are now well known. This process, which parameterises the geometric structure of the digits as a previous stage to their recognition by the neural network, has the inconvenience of ignoring the sequential character of handwriting. The method proposed explores the improvement introduced in a handwritten recognition system when it incorporates the sequential information of handwriting and the hidden Markov model (HMM) is used as a classifier. The handwritten off-line classifier proposed acquire the handwritten characters by a scanner and after their parameterisation (include noise filtering, binarization, thinning and vectorisation) as a sequence is recognised by the HMM classifier, which provides a good probabilistic representation of sequences having large variations. Different parameterisation techniques are introduced and compared.
URI: http://hdl.handle.net/10553/46168
ISSN: 0537-9989
Fuente: IEE Conference Publication[ISSN 0537-9989], p. 770-774
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.