Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46146
Título: | LBP based line-wise script identification | Autores/as: | Ferrer, Miguel A. Morales, Aythami Pal, Umapada |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | optical character recognition least squares approximations support vector machines document image processing text detection |
Fecha de publicación: | 2013 | Publicación seriada: | Proceedings of the International Conference on Document Analysis and Recognition, ICDAR | Conferencia: | 12th International Conference on Document Analysis and Recognition (ICDAR) 12th International Conference on Document Analysis and Recognition, ICDAR 2013 |
Resumen: | Script identification is an important step in multi-script document analysis. As different textures present in text portion of a script are the main distinct features of the script, in this paper, we proposed a new algorithm for printed script identification based on texture analysis. Since local patterns is a unifying concept for traditional statistical and structural approaches of texture analysis, here the basic idea is to use the histogram of the local patterns as description of the script stroke directions distribution which is the characteristic of every script. As local pattern, the basic version of the Local Binary Patterns (LBP) and a modified version of the Orientation of the Local Binary Patterns (OLBP) are proposed. A Least Square Support Vector Machine (LS-SVM) is used as identifier. The scheme has been verified on two databases. The first or training database is a database with 200 sheets of 10 different scripts. The scripts font is provided by the Google translator. The second or test database has been obtained by scanning different newspapers and books. It contains 5 common scripts among 10 different scripts of the first database. From the experiment we obtained encouraging results. | URI: | http://hdl.handle.net/10553/46146 | ISSN: | 1520-5363 | DOI: | 10.1109/ICDAR.2013.81 | Fuente: | Proceedings of the International Conference on Document Analysis and Recognition, ICDAR[ISSN 1520-5363] (6628646), p. 369-373 |
Colección: | Actas de congresos |
Citas SCOPUSTM
37
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
30
actualizado el 17-nov-2024
Visitas
109
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.