Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46144
Título: Multiple Training - One Test Methodology for Handwritten Word-Script Identification
Autores/as: Ferrer, Miguel A. 
Morales Moreno,Aythami 
Rodríguez, Nayara
Pal, Umapada
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Palabras clave: Handwritten character recognition
Document image processing
Support vector machines
Fecha de publicación: 2014
Editor/a: Institute of Electrical and Electronics Engineers (IEEE) 
Conferencia: Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR 
Resumen: Script identification is an important area in handwriting document image analysis field. The script identification at word level on documents written in multiple scripts is an open challenge for the scientific community and a real concern in countries with multiple official languages, e. G. The country like India. Such documents usually contain two scripts: the most of the document are written in the regional script while some words, acronyms or numbers are written in Roman script. In this case a word or even a character level script identification is required to locate the second script characters in the document. Here the major problem is the few script descriptors available for the script estimation which convey high error rates. The literatures try to address this problem by looking for more efficient descriptors. In this paper we propose a Multiple Training - One Test technique to alleviate this problem. Several classifiers are trained, each one with words of similar amount of information. A scale invariable word information index is defined for this sake. To identify the script of a query word, its word information index is worked out, and its script is identified with the most appropriate classifier. Accuracy improvements has been obtained with this promising technique, especially for the shorten words.
URI: http://hdl.handle.net/10553/46144
ISBN: 978-1-4799-4335-7
ISSN: 2167-6445
DOI: 10.1109/ICFHR.2014.132
Fuente: Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR [ISSN 2167-6445], v. 2014-December (6981111), p. 754-759
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

8
actualizado el 01-dic-2024

Citas de WEB OF SCIENCETM
Citations

7
actualizado el 24-nov-2024

Visitas

101
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.