Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46142
Título: An approach to SWIR hyperspectral hand biometrics
Autores/as: Ferrer, Miguel A. 
Morales, Aythami
Díaz, Alba
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Biometric
Hand Recognition
Spectrographic
Hyperspectral
Fecha de publicación: 2014
Editor/a: 0020-0255
Publicación seriada: Information Sciences 
Resumen: Hand based biometry includes some of the most useful technologies for person identification. The search for new techniques, which complement the battery of existing methods, is an open topic. This paper examines the utility of hyperspectral imagery for hand recognition. Hyperspectral technology permits the sensing of the subsurface tissue structure, which is significantly different from person to person. The data are collected using a SWIR camera in conjunction with an optical spectrograph. This transforms the camera into a line-scan hyperspectral imaging device. Three feature extraction methods for hyperspectral hand curve characterization are examined. They are based on the area, slope or curvature at different automatically selected spatial hand positions. We report a set of experiments which explore: best hand zones for extracting local hyperspectral features; robustness against the number of training samples; error detection; and occlusion. Different strategies for combining the spectral features with geometric traits available in the hyperspectral cube are discussed. Our experiments show that local spectral properties of human tissue are effective discriminants for biometric recognition with a performance near to or better than that obtained by other hand traits. Equal Error Rates of 0.05% and an identification rate of 96.71% are obtained from a database of 154 people. These results along with their higher robustness to spoofing attacks make the hyperspectral features a promising alternative for person identification.
URI: http://hdl.handle.net/10553/46142
ISSN: 0020-0255
DOI: 10.1016/j.ins.2013.10.011
Fuente: Information Sciences[ISSN 0020-0255],v. 268, p. 3-19
Colección:Artículos
Vista completa

Citas SCOPUSTM   

24
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

18
actualizado el 15-dic-2024

Visitas

73
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.