Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46139
Título: Latent fingerprint identification using deformable minutiae clustering
Autores/as: Medina-Pérez, Miguel Angel
Moreno, Aythami Morales
Ferrer Ballester, Miguel Angel 
García-Borroto, Milton
Loyola-González, Octavio
Altamirano-Robles, Leopoldo
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Biometrics
Latent fingerprints
Minutiae-based algorithms
Fecha de publicación: 2016
Editor/a: 0925-2312
Publicación seriada: Neurocomputing 
Conferencia: 6th Mexican Conference on Pattern Recognition (MCPR) 
Resumen: Automatic latent fingerprint identification is a useful tool for criminal investigation. However, the accuracy of identification reported in the state-of-the-art literature is low due to the distortion in latent fingerprint images. In this paper, we describe a new algorithm based on the use of clustering which is independent of the minutiae descriptors. The proposed technique improves the robustness of identification in the presence of large non-linear deformation which is associated with latent fingerprint images. The new algorithm finds multiple overlapping clusters of matching minutiae pairs which are merged together to find matching minutiae. Several experiments performed using latent fingerprint databases show that our proposed algorithm achieves higher accuracy than those presented in state-of-the-art literature. Moreover, the results show that the proposed algorithm is successful in dealing with the large distortion associated with latent fingerprints formed under the worst conditions.
URI: http://hdl.handle.net/10553/46139
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2015.05.130
Fuente: Neurocomputing[ISSN 0925-2312],v. 175, p. 851-865
Colección:Artículos
Vista completa

Citas SCOPUSTM   

32
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

26
actualizado el 15-dic-2024

Visitas

105
actualizado el 16-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.