Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46133
Título: SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition
Autores/as: Das, Abhijit
Pal, Umapada
Ferrer, Miguel A. 
Blumenstein, Michael
Štepec, Dejan
Rot, Peter
Emeršič, Žiga
Peer, Peter
Štruc, Vitomir
Kumar, S. V.Aruna
Harish, B. S.
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Iris recognition
Task analysis
Image segmentation
Benchmark testing
Clustering algorithms
Fecha de publicación: 2018
Publicación seriada: IEEE International Joint Conference on Biometrics, IJCB 2017
Conferencia: 2017 IEEE International Joint Conference on Biometrics, IJCB 2017 
Resumen: This paper summarises the results of the Sclera Segmentation and Eye Recognition Benchmarking Competition (SSERBC 2017). It was organised in the context of the International Joint Conference on Biometrics (IJCB 2017). The aim of this competition was to record the recent developments in sclera segmentation and eye recognition in the visible spectrum (using iris, sclera and peri-ocular, and their fusion), and also to gain the attention of researchers on this subject. In this regard, we have used the Multi-Angle Sclera Dataset (MASD version 1). It is comprised of2624 images taken from both the eyes of 82 identities. Therefore, it consists of images of 164 (82×2) eyes. A manual segmentation mask of these images was created to baseline both tasks. Precision and recall based statistical measures were employed to evaluate the effectiveness of the segmentation and the ranks of the segmentation task. Recognition accuracy measure has been employed to measure the recognition task. Manually segmented sclera, iris and peri-ocular regions were used in the recognition task. Sixteen teams registered for the competition, and among them, six teams submitted their algorithms or systems for the segmentation task and two of them submitted their recognition algorithm or systems. The results produced by these algorithms or systems reflect current developments in the literature of sclera segmentation and eye recognition, employing cutting edge techniques. The MASD version 1 dataset with some of the ground truth will be freely available for research purposes. The success of the competition also demonstrates the recent interests of researchers from academia as well as industry on this subject.
URI: http://hdl.handle.net/10553/46133
ISBN: 9781538611241
DOI: 10.1109/BTAS.2017.8272764
Fuente: IEEE International Joint Conference on Biometrics, IJCB 2017,v. 2018-January, p. 742-747
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

37
actualizado el 01-dic-2024

Citas de WEB OF SCIENCETM
Citations

23
actualizado el 25-feb-2024

Visitas

55
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.