Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46034
Título: | A bark recognition algorithm for plant classification using a least square support vector machine | Autores/as: | Blaanco, Luis J. Travieso, Carlos M. Quinteiro, Jose M. Hernandez, Pablo V. Dutta, Malay Kishore Singh, Anushikha |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Classification algorithm Support vector machines Discrete wavelet transforms Biology computing Pattern classification |
Fecha de publicación: | 2017 | Publicación seriada: | 2016 Ninth International Conference On Contemporary Computing (Ic3) | Conferencia: | 9th International Conference on Contemporary Computing, IC3 2016 | Resumen: | In this paper, a bark recognition algorithm for plant classification is presented. A Least-Square Support Vector Machine (LSSVM) with image and data processing techniques is used to implement a general purpose automated classifier. Using a data base of 40 sections of photographs taken of each of the 23 species, we applied an algorithm to homogenize the illumination of the images. After applying it, we obtained a 256-elements array from the Local Binary Pattern (LBP) histogram. Each element of the array was introduced in the LSSVM for classification. The success rate of the resultant recognizer is 82.38%. | URI: | http://hdl.handle.net/10553/46034 | ISBN: | 9781509032518 | ISSN: | 2572-6110 | DOI: | 10.1109/IC3.2016.7880233 | Fuente: | 2016 9th International Conference on Contemporary Computing, IC3 2016 (7880233) |
Colección: | Actas de congresos |
Citas SCOPUSTM
8
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
5
actualizado el 25-feb-2024
Visitas
116
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.