Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45859
Título: Predictive models for bacterial growth in sea bass (Dicentrarchus labrax) stored in ice
Autores/as: Carrascosa Iruzubieta, Conrado Javier 
Millán Larriva, Rafael 
Saavedra Santana, Pedro 
Jáber Mohamad, José Raduán 
Montenegro, Tania
Raposo, António
Pérez García, Esteban
Sanjuán Velázquez, Esther 
Clasificación UNESCO: 310905 Microbiología
3105 Peces y fauna silvestre
Palabras clave: Bream Sparus-Aurata
Sardines Sardina-Pilchardus
Shelf-Life
Sensory Properties
Fresh Fish, et al.
Fecha de publicación: 2014
Editor/a: 0950-5423
Publicación seriada: International Journal of Food Science and Technology 
Resumen: The purpose of this paper was to estimate microbial growth through predictive modelling as a key element in determining the quantitative microbiological contamination of sea bass stored in ice and cultivated in different seasons of the year. In the present study, two different statistical models were used to analyse changes in microbial growth in whole, ungutted sea bass (Dicentrarchus labrax) stored in ice. The total counts of aerobic mesophilic and psychrotrophic bacteria, Pseudomonas sp., Aeromonas sp., Shewanella putrefaciens, Enterobacteriaceae, sulphide-reducing Clostridium and Photobacterium phosphoreum were determined in muscle, skin and gills over an 18-day period using traditional methods and evaluating the seasonal effect. The results showed that specific spoilage bacteria (SSB) were dominant in all tissues analysed, but were mainly found in the gills. Predictive modelling showed a seasonal effect among the fish analysed. The application of these models can contribute to the improvement of food safety control by improving knowledge of the microorganisms responsible for the spoilage and deterioration of sea bass.
URI: http://hdl.handle.net/10553/45859
ISSN: 0950-5423
DOI: 10.1111/ijfs.12307
Fuente: International Journal of Food Science and Technology [ISSN 0950-5423], v. 49, p. 354-363
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.