Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45745
Título: Automatic corner matching in highly distorted images of Zhang’s calibration pattern
Autores/as: Alemán-Flores, Miguel 
Alvarez, Luis 
Gomez, Luis 
Santana-Cedrés, Daniel 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Palabras clave: Camera calibration
Lens distortion
Zhang’s method
Fecha de publicación: 2014
Editor/a: Springer 
Proyectos: Modelización Matemática de Los Procesos de Calibración de Cámaras de Video. 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 19th Iberoamerican Congress on Pattern Recognition (CIARP 2014) 
Resumen: Zhang’s method is a widely used technique for camera calibration from different views of a planar calibration pattern. This pattern contains a set of squares arranged in a certain configuration. In order to calibrate the camera, the corners of the squares in the images must be matched with those in the reference model. When the images show a strong lens distortion, the usual methods to compute the corner matching fail because the corners are shifted from their expected positions. We propose a new method which automatically estimates such corner matching taking into account the lens distortion. The method is based on an automatic algorithm for lens distortion correction which allows estimating the distorted lines passing through the edges of the squares. We present some experiments to illustrate the performance of the proposed method, as well as a comparison with the usual technique proposed in a Matlab toolbox.
URI: http://hdl.handle.net/10553/45745
ISBN: 978-3-319-12567-1
ISSN: 0302-9743
DOI: 10.1007/978-3-319-12568-8_91
Fuente: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2014. Lecture Notes in Computer Science, v. 8827 LNCS, p. 754-761
Colección:Capítulo de libro
miniatura
pdf
Adobe PDF (496,01 kB)
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 30-may-2021

Visitas

168
actualizado el 28-sep-2024

Descargas

39
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.