Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45014
Título: A low-computational-complexity algorithm for hyperspectral endmember extraction: Modified vertex component analysis
Autores/as: Lopez, Sebastian 
Horstrand, Pablo
Callico, Gustavo M. 
López, José Fco 
Sarmiento, Roberto 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Hyperspectral imaging
Algorithm design and analysis
Signal processing algorithms
Computational complexity
Accuracy
Fecha de publicación: 2012
Editor/a: 1545-598X
Publicación seriada: IEEE Geoscience and Remote Sensing Letters 
Resumen: Endmember extraction represents one of the most challenging aspects of hyperspectral image processing. In this letter, a new algorithm for endmember extraction, named modified vertex component analysis (MVCA), is presented. This new technique outperforms the popular vertex component analysis (VCA) by applying a low-complexity orthogonalization method and by utilizing integer instead of floating-point arithmetic when dealing with hyperspectral data. The feasibility of this technique is demonstrated by comparing its performance with VCA on synthetic mixtures as well as on the well-known Cuprite hyperspectral image. MVCA shows promising results in terms of much lower computational complexity, still reproducing similar endmember accuracy than its original counterpart. Moreover, the features of this algorithm combined with state-of-the-art hardware implementations qualify MVCA as a good potential candidate for all those applications in which real time is a must.
URI: http://hdl.handle.net/10553/45014
ISSN: 1545-598X
DOI: 10.1109/LGRS.2011.2172771
Fuente: IEEE Geoscience and Remote Sensing Letters[ISSN 1545-598X],v. 9 (6082371), p. 502-506
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.