Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/45014
Título: | A low-computational-complexity algorithm for hyperspectral endmember extraction: Modified vertex component analysis | Autores/as: | Lopez, Sebastian Horstrand, Pablo Callico, Gustavo M. López, José Fco Sarmiento, Roberto |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Hyperspectral imaging Algorithm design and analysis Signal processing algorithms Computational complexity Accuracy |
Fecha de publicación: | 2012 | Editor/a: | 1545-598X | Publicación seriada: | IEEE Geoscience and Remote Sensing Letters | Resumen: | Endmember extraction represents one of the most challenging aspects of hyperspectral image processing. In this letter, a new algorithm for endmember extraction, named modified vertex component analysis (MVCA), is presented. This new technique outperforms the popular vertex component analysis (VCA) by applying a low-complexity orthogonalization method and by utilizing integer instead of floating-point arithmetic when dealing with hyperspectral data. The feasibility of this technique is demonstrated by comparing its performance with VCA on synthetic mixtures as well as on the well-known Cuprite hyperspectral image. MVCA shows promising results in terms of much lower computational complexity, still reproducing similar endmember accuracy than its original counterpart. Moreover, the features of this algorithm combined with state-of-the-art hardware implementations qualify MVCA as a good potential candidate for all those applications in which real time is a must. | URI: | http://hdl.handle.net/10553/45014 | ISSN: | 1545-598X | DOI: | 10.1109/LGRS.2011.2172771 | Fuente: | IEEE Geoscience and Remote Sensing Letters[ISSN 1545-598X],v. 9 (6082371), p. 502-506 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.