Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45008
Título: GPU implementation of an automatic target detection and classification algorithm for hyperspectral image analysis
Autores/as: Bernabe, Sergio
Lopez, Sebastián 
Plaza, Antonio
Sarmiento, Roberto 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Hyperspectral imaging
Graphics processing unit
Vectors
Kernel
Optimization
Fecha de publicación: 2013
Editor/a: 1545-598X
Publicación seriada: IEEE Geoscience and Remote Sensing Letters 
Resumen: The detection of (moving or static) targets in remotely sensed hyperspectral images often requires real-time responses for swift decisions that depend upon high computing performance of algorithm analysis. The automatic target detection and classification algorithm (ATDCA) has been widely used for this purpose. In this letter, we develop several optimizations for accelerating the computational performance of ATDCA. The first one focuses on the use of the Gram-Schmidt orthogonalization method instead of the orthogonal projection process adopted by the classic algorithm. The second one is focused on the development of a new implementation of the algorithm on commodity graphics processing units (GPUs). The proposed GPU implementation properly exploits the GPU architecture at low level, including shared memory, and provides coalesced accesses to memory that lead to very significant speedup factors, thus taking full advantage of the computational power of GPUs. The GPU implementation is specifically tailored to hyperspectral imagery and the special characteristics of this kind of data, achieving real-time performance of ATDCA for the first time in the literature. The proposed optimizations are evaluated not only in terms of target detection accuracy but also in terms of computational performance using two different GPU architectures by NVIDIA: Tesla C1060 and GeForce GTX 580, taking advantage of the performance of operations in single-precision floating point. Experiments are conducted using hyperspectral data sets collected by three different hyperspectral imaging instruments. These results reveal considerable acceleration factors while retaining the same target detection accuracy for the algorithm.
URI: http://hdl.handle.net/10553/45008
ISSN: 1545-598X
DOI: 10.1109/LGRS.2012.2198790
Fuente: IEEE Geoscience and Remote Sensing Letters[ISSN 1545-598X],v. 10 (6218752), p. 221-225
Colección:Artículos
Vista completa

Citas SCOPUSTM   

84
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

77
actualizado el 17-nov-2024

Visitas

62
actualizado el 09-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.