Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/45008
Campo DC Valoridioma
dc.contributor.authorBernabe, Sergioen_US
dc.contributor.authorLopez, Sebastiánen_US
dc.contributor.authorPlaza, Antonioen_US
dc.contributor.authorSarmiento, Robertoen_US
dc.contributor.otherSarmiento, Roberto-
dc.contributor.otherLopez, Sebastian-
dc.contributor.otherBernabe Garcia, Sergio-
dc.contributor.otherPlaza, Antonio-
dc.date.accessioned2018-11-22T06:33:41Z-
dc.date.available2018-11-22T06:33:41Z-
dc.date.issued2013en_US
dc.identifier.issn1545-598Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/45008-
dc.description.abstractThe detection of (moving or static) targets in remotely sensed hyperspectral images often requires real-time responses for swift decisions that depend upon high computing performance of algorithm analysis. The automatic target detection and classification algorithm (ATDCA) has been widely used for this purpose. In this letter, we develop several optimizations for accelerating the computational performance of ATDCA. The first one focuses on the use of the Gram-Schmidt orthogonalization method instead of the orthogonal projection process adopted by the classic algorithm. The second one is focused on the development of a new implementation of the algorithm on commodity graphics processing units (GPUs). The proposed GPU implementation properly exploits the GPU architecture at low level, including shared memory, and provides coalesced accesses to memory that lead to very significant speedup factors, thus taking full advantage of the computational power of GPUs. The GPU implementation is specifically tailored to hyperspectral imagery and the special characteristics of this kind of data, achieving real-time performance of ATDCA for the first time in the literature. The proposed optimizations are evaluated not only in terms of target detection accuracy but also in terms of computational performance using two different GPU architectures by NVIDIA: Tesla C1060 and GeForce GTX 580, taking advantage of the performance of operations in single-precision floating point. Experiments are conducted using hyperspectral data sets collected by three different hyperspectral imaging instruments. These results reveal considerable acceleration factors while retaining the same target detection accuracy for the algorithm.en_US
dc.languageengen_US
dc.publisher1545-598X-
dc.relation.ispartofIEEE Geoscience and Remote Sensing Lettersen_US
dc.sourceIEEE Geoscience and Remote Sensing Letters[ISSN 1545-598X],v. 10 (6218752), p. 221-225en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherHyperspectral imagingen_US
dc.subject.otherGraphics processing uniten_US
dc.subject.otherVectorsen_US
dc.subject.otherKernelen_US
dc.subject.otherOptimizationen_US
dc.titleGPU implementation of an automatic target detection and classification algorithm for hyperspectral image analysisen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LGRS.2012.2198790-
dc.identifier.scopus84869502405-
dc.identifier.isi000310901600003-
dcterms.isPartOfIeee Geoscience And Remote Sensing Letters-
dcterms.sourceIeee Geoscience And Remote Sensing Letters[ISSN 1545-598X],v. 10 (2), p. 221-225-
dc.contributor.authorscopusid36550217200-
dc.contributor.authorscopusid57187722000-
dc.contributor.authorscopusid7006613644-
dc.contributor.authorscopusid35609452100-
dc.description.lastpage225-
dc.identifier.issue6218752-
dc.description.firstpage221-
dc.relation.volume10-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000310901600003-
dc.contributor.daisngid1483942-
dc.contributor.daisngid465777-
dc.contributor.daisngid23075-
dc.contributor.daisngid116294-
dc.identifier.investigatorRIDL-6017-2014-
dc.identifier.investigatorRIDL-8108-2014-
dc.identifier.investigatorRIDH-5350-2015-
dc.identifier.investigatorRIDC-4455-2008-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Bernabe, S-
dc.contributor.wosstandardWOS:Lopez, S-
dc.contributor.wosstandardWOS:Plaza, A-
dc.contributor.wosstandardWOS:Sarmiento, R-
dc.date.coverdateEnero 2013-
dc.identifier.ulpgces
dc.description.sjr1,443
dc.description.jcr1,809
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-2360-6721-
crisitem.author.orcid0000-0002-4843-0507-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameLópez Suárez, Sebastián Miguel-
crisitem.author.fullNameSarmiento Rodríguez, Roberto-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

84
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

77
actualizado el 17-nov-2024

Visitas

62
actualizado el 09-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.