Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44297
Título: Study of correlation among several traffic parameters using evolutionary algorithms: traffic flow, greenhouse emissions and network occupancy
Autores/as: Medina, Javier Sánchez 
Moreno, Manuel Galán
Royo, Enrique Rubio 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Genetic algorithms
Cellular automata
Traffic optimisation
Greenhouse emission
Multicriteria optimisation
Fecha de publicación: 2007
Proyectos: Gestor de Conocimiento, Personal y Corporativo, Orientado A Procesos: Plataforma Suricata. 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 11th International Conference on Computer Aided Systems Theory 
Resumen: During the last two years we have been working on the optimisation of traffic lights cycles. We designed an evolutionary, distributed architecture to do this. This architecture includes a Genetic Algorithm for the optimisation. So far we have performed a single criterion optimisation – the total volume of vehicles that left the network once the simulation finishes. Our aim is to extend our architecture towards a multicriteria optimisation. We are considering Network Occupancy and Greenhouse Emissions as suitable candidates for our purpose. Throughout this work we will share a statistical based study about the two new criteria that will help us to decide whether to include them or not in the fitness function of our system. To do so we have used data from two real world traffic networks.
URI: http://hdl.handle.net/10553/44297
ISBN: 978-3-540-75866-2
ISSN: 0302-9743
DOI: 10.1007/978-3-540-75867-9_142
Fuente: Moreno Díaz R., Pichler F., Quesada Arencibia A. (eds) Computer Aided Systems Theory – EUROCAST 2007. EUROCAST 2007. Lecture Notes in Computer Science, vol 4739. Springer, Berlin, Heidelberg
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

5
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 25-feb-2024

Visitas

122
actualizado el 30-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.