Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44102
Título: | Application of support vector machines and Gaussian Mixture Models for the detection of obstructive sleep apnoea based on the RR series | Autores/as: | Ravelo, A. G. Travieso, C. M. Lorenzo, F. D. Navarro Mesa, Juan Luis Martin, S. Alonso, J. B. Ferrer, M. A. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | RR series Sleep apnoea Gaussian Mixture Models Support Vector Machines |
Fecha de publicación: | 2006 | Editor/a: | 1109-2750 | Publicación seriada: | WSEAS Transactions on Computers | Resumen: | In this paper we present the performances of two automatic statistical methods for the classification of the obstructive sleep apnoea syndrome based on the RR series obtained from the Electrocardiogram (ECG). We study the effect of working with Support Vector Machines (SVM) and compare its performance with a reference detector based on Gaussian Mixture Models (GMM). These classifications methods require two previous stages: preprocessing and feature extraction. Firstly, we apply a preprocessing over the ECG for estimating the R instants which is previous to feature extraction. Secondly, a power-ratio-based coefficient (PRC) and a Linear Frequency Cepstral Coefficients (LFCC) parameterization over the RR signal is applied to extract the relevant characteristics. We fix the set of features for both classification methods. | URI: | http://hdl.handle.net/10553/44102 | ISSN: | 1109-2750 | Fuente: | WSEAS Transactions on Computers[ISSN 1109-2750],v. 5(1), p. 121-124 |
Colección: | Artículos |
Citas SCOPUSTM
6
actualizado el 17-nov-2024
Visitas
70
actualizado el 05-may-2024
Google ScholarTM
Verifica
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.