Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44089
Título: | Improving an automatic arrhythmias recogniser based in ECG signals | Autores/as: | Corsino, Jorge Travieso, Carlos M. Alonso, Jesús B. Ferrer, Miguel A. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Wavelet transform, Automatic recognition of arrhythmias, Electrocardiography, Neural network, Principal component analysis | Fecha de publicación: | 2008 | Publicación seriada: | BIOSIGNALS 2008 - Proceedings of the 1st International Conference on Bio-inspired Systems and Signal Processing | Conferencia: | 1st International Conference on Bio-Inspired Systems and Signal Processing BIOSIGNALS 2008 - 1st International Conference on Bio-inspired Systems and Signal Processing |
Resumen: | In the present work, we have developed and improved a tool for the automatic arrhythmias detection, based on neural network with the "more-voted" algorithm. Arrhythmia Database MIT has been used in the work in order to detect eight different states, seven are pathologies and one is normal. The unions of different blocks and its optimization have found an improvement of success rates. In particular, we have used wavelet transform in order to characterize the patron wave of electrocardiogram (ECG), and principal components analysis in order to improve the discrimination of the coefficients. Finally, a neural network with more-voted method has been applied. | URI: | http://hdl.handle.net/10553/44089 | ISBN: | 9789898111180 | Fuente: | BIOSIGNALS 2008 - Proceedings of the 1st International Conference on Bio-inspired Systems and Signal Processing,v. 2, p. 453-457 |
Colección: | Actas de congresos |
Visitas
51
actualizado el 20-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.