Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44081
Título: | Improving a leaves automatic recognition process using PCA | Autores/as: | Solé-Casals, Jordi Travieso, Carlos M. Alonso, Jesús B. Ferrer, Miguel A. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Principal Component Analysis Pattern Recognition Leaves Recognition Parameterization Characteristics selection | Fecha de publicación: | 2009 | Editor/a: | 1615-3871 | Publicación seriada: | Advances in Soft Computing | Conferencia: | 2nd International Workshop on Practical Applications of Computational Biology and Bioinformatics (IWPACBB 08) | Resumen: | In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used, and Principal Component Analysis (PCA) is applied in order to study which is the best number of components for the classification task, implemented by means of a Support Vector Machine (SVM) System. Obtained results are satisfactory, and compared with [4] our system improves the recognition success, diminishing the variance at the same time. | URI: | http://hdl.handle.net/10553/44081 | ISBN: | 9783540858607 | ISSN: | 1615-3871 | DOI: | 10.1007/978-3-540-85861-4_29 | Fuente: | Advances in Soft Computing[ISSN 1615-3871],v. 49, p. 243-251 |
Colección: | Actas de congresos |
Citas SCOPUSTM
7
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 25-feb-2024
Visitas
119
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.