Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44063
Título: | Robust identification of persons by lips contour using shape transformation | Autores/as: | Briceño, Juan C. Travieso, Carlos M. Alonso, Jesús B. Ferrer, Miguel A. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Robustness , Identification of persons , Lips , Shape , Hidden Markov models , Support vector machines , Face detection , Kernel , Support vector machine classification , Biometrics | Fecha de publicación: | 2010 | Publicación seriada: | INES 2010 - 14th International Conference on Intelligent Engineering Systems, Proceedings | Conferencia: | 14th International Conference on Intelligent Engineering Systems, INES 2010 | Resumen: | In this paper we present a biometric approach, based on lip shape. We have performed an image preprocessing, in order to detect the face of a person image. After this, we have enhanced the lips image using a color transformation, and next we do its detection. The parameterization is based on lips contour points. Those points have been transformed by a Hidden Markov Model (HMM) kernel, using a minimization of Fisher Score. Finally, a one-versus-all multiclass supervised approach based on Support Vector Machines (SVM) is applied as a classifier. A database with 50 users and 10 samples per class has been built. A cross-validation strategy have been applied in our experiments, reaching success rates up to 99.6%, using four lip training samples per class, and evaluating with six lip test samples. This success was found using a shape of 150 points, with 40 states in Hidden Markov Model and a RBF kernel for a supervised approach based on Support Vector Machines. | URI: | http://hdl.handle.net/10553/44063 | ISBN: | 9781424476527 | DOI: | 10.1109/INES.2010.5483848 | Fuente: | INES 2010 - 14th International Conference on Intelligent Engineering Systems, Proceedings (5483848), p. 203-207 |
Colección: | Actas de congresos |
Citas SCOPUSTM
7
actualizado el 17-nov-2024
Visitas
54
actualizado el 25-nov-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.