Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44058
Título: Bubbles detection on sea surface images
Autores/as: Travieso, Carlos M. 
Ferrer, Miguel A. 
Alonso, Jesús B. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Support Vector Machine , Recognition Rate , European Space Agency , Logic Combination , Practical Salinity Unit
Fecha de publicación: 2010
Editor/a: 0302-9743
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 20th International Conference on Artificial Neural Networks 
Resumen: In this work a novel system for sea surface images pre-processing and processing has been developed in order to detect bubbles on the sea surface. This application is fundamental to verify radiometer satellite systems which are used to the study of the floor humidity and the sea salinity. 160 images of 8 kinds of salinity have been processed, 20 per class. Two main steps have been implemented; the first step is the image pre-processing and enhancing, in order to improve the bubbles detection. The second step is the segmentation and the bubbles detection. A combination system has been used in order to improve the final result, getting a recognition rate of 95.43%.
URI: http://hdl.handle.net/10553/44058
ISBN: 978-3-642-15818-6
ISSN: 0302-9743
DOI: 10.1007/978-3-642-15819-3_73
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 6352 LNCS, p. 565-568
Colección:Actas de congresos
Vista completa

Visitas

75
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.