Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44026
Título: Improving spider recognition based on biometric web analysis
Autores/as: Travieso Gonzalez, Carlos M. 
Ticay-Rivas, Jaime Roberto
Del Pozo-Baños, Marcos
Eberhard, William G.
Alonso-Hernández, Jesús B. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Spider webs , spider classification ,independent component analysis , support vector machine
Fecha de publicación: 2012
Editor/a: 0302-9743
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012 
Resumen: This work presents an improvement of the automatic and supervised spider identification approach based on biometric spider web analysis. We have used as feature extractor, a Joint Approximate Diagonalization of Eigen-matrixes Independent Component Analysis applying to a binary image with a reduced size (20×20 pixels) from the colour original image. Finally, we have applied a least square support vector machine as classifier, reaching over 98.15% in our hold-50%-out validation. This system is making easier Biologists’ tasks in this field, because they can have a second opinion or have a tool for this work.
URI: http://hdl.handle.net/10553/44026
ISBN: 9783642332746
ISSN: 0302-9743
DOI: 10.1007/978-3-642-33275-3_54
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 7441 LNCS, p. 438-446
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

103
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.