Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43995
Título: | Emotional speech characterization for real time applications in real environments | Autores/as: | Alonso, Jesus B. Cabrera, Josue Ferrer, Miguel A. Canino, Jose M. Travieso González, Carlos Manuel Dutta, Malay Kishore Singh, Anushikha |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Speech Speech recognition Feature extraction Noise Pragmatics, et al. |
Fecha de publicación: | 2015 | Conferencia: | International Conference on Medical Imaging, M-Health and Emerging Communication Systems (MedCom) | Resumen: | A simple and effective method of automatic discrimination between emotional and unemotional speech is presented. Traditional methods of emotional discrimination use prosodic and paralinguistic features, which are determined by a linguistic segmentation of the locution. However, these methods are not appropriate in real time applications because of their high computational cost and the linguistic segmentation requirement by locutions. This letter proposes a new strategy based on a few prosodic and paralinguistic features set obtained from a temporal segmentation of the speech signal. This new strategy is robust to interfering noises that are present in real environments, offering a low computational cost and improving the performance of a segmentation based on linguistic aspects. | URI: | http://hdl.handle.net/10553/43995 | ISBN: | 9781479950973 | DOI: | 10.1109/MedCom.2014.7005994 | Fuente: | 2014 International Conference On Medical Imaging, M-Health & Emerging Communication Systems (Medcom), p. 152-156 |
Colección: | Actas de congresos |
Visitas
117
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.