Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43993
Título: | Solar radiation modelling for the estimation of the solar energy generation | Autores/as: | Hernández-Travieso, Jose G. Travieso, Carlos M. Alonso, Jesús B. Dutta, Malay Kishore |
Clasificación UNESCO: | 3303 ingeniería y tecnología químicas | Fecha de publicación: | 2014 | Publicación seriada: | 2014 7th International Conference on Contemporary Computing, IC3 2014 | Conferencia: | 2014 7th International Conference on Contemporary Computing, IC3 2014 | Resumen: | To know in advance the value of solar radiation is an advantage in order to obtain solar energy. This paper proposes the design and implementation of solar radiation modelling for the estimation of the solar energy generation, based on different series of data collected from meteorological stations in Gran Canaria and Tenerife (Canary Islands, Spain), helping to generate green energy from sun by the estimation of solar radiation. Artificial Neural Network multilayer perceptron, were the classification method used to obtain the forecast. The study of solar radiation prediction achieves a mean average error of 0.04 kilowatts hour per square meter. | URI: | http://hdl.handle.net/10553/43993 | ISBN: | 9781479951734 | ISSN: | 2572-6110 | DOI: | 10.1109/IC3.2014.6897230 | Fuente: | 2014 7th International Conference on Contemporary Computing, IC3 2014 (6897230), p. 536-541 |
Colección: | Actas de congresos |
Citas SCOPUSTM
8
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 25-feb-2024
Visitas
193
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.