Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43984
Título: Building a Cepstrum-HMM kernel for Apnea identification
Autores/as: Travieso, Carlos M. 
Alonso, Jesus B. 
del Pozo, Marcos
Ticay, Jaime R.
Castellanos-Dominguez, Germán
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Automatic Apnea detection, Artefacts removal, Hidden Markov Model, Kernel building, Machine learning
Fecha de publicación: 2014
Editor/a: 0925-2312
Publicación seriada: Neurocomputing 
Resumen: Authors present an approach based on the transformation of the Cepstral domain on Hidden Markov Model, which is employed for the automatic diagnosis of the Obstructive Sleep Apnea syndrome. The approach includes an Electrocardiogram artefacts removal and R wave detection stage. In addition, the system is modeled by a transformation of the Cepstral domain sequence using Hidden Markov Models (HMM). Final decisions are taken with two different approaches: A Hidden Markov Model and Support Vector Machine classifiers, where the parameterization is based on the transformation of HMM by a kernel. Two public databases have been used for experiments. Firstly, Physionet Apnea-ECG Database for building algorithms, and finally, The St. Vincent's University Hospital/University College Dublin Sleep Apnea Database for testing out with a blind independent dataset. Achieved results were up to 99.23% for Physionet Apnea-ECG Database, and 98.64% for The St. Vincent's Database.
URI: http://hdl.handle.net/10553/43984
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2013.04.048
Fuente: Neurocomputing[ISSN 0925-2312],v. 132, p. 159-165
Colección:Artículos
Vista completa

Citas SCOPUSTM   

21
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

21
actualizado el 17-nov-2024

Visitas

88
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.