Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43981
Título: | Hand shape identification on multirange images | Autores/as: | Travieso, Carlos M. Ticay-Rivas, Jaime R. Briceño, Juan C. Del Pozo-Baños, Marcos Alonso, Jesús B. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Hand-based Biometrics, Multi-range images, DHMM kernel, Edge detection | Fecha de publicación: | 2014 | Editor/a: | 0020-0255 | Publicación seriada: | Information Sciences | Resumen: | A hand-shape based biometric identification system which is independent of the image spectrum range is proposed here. Two different spectrum ranges; visible and mid-range infrared, were used to validated the architecture, which maintained the accuracy and stability levels between ranges. In particular, three public databases were tested, obtaining accuracies over 99.9% using a 40% hold-out cross-validation approach. Discrete Hidden Markov Models (DHMM) representing each target identification class was trained with angular chain descriptors. A kernel was then extracted from the trained DHMM and applied as a feature extraction method. Finally, supervised Support Vector Machines were used to classify the extracted features. | URI: | http://hdl.handle.net/10553/43981 | ISSN: | 0020-0255 | DOI: | 10.1016/j.ins.2014.02.031 | Fuente: | Information Sciences[ISSN 0020-0255],v. 275, p. 45-56 |
Colección: | Artículos |
Citas SCOPUSTM
16
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
16
actualizado el 17-nov-2024
Visitas
81
actualizado el 04-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.