Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43949
Título: Writer identification approach by holistic graphometric features using off-line handwritten words
Autores/as: Vásquez, José L.
Dutta, Malay Kishore
Travieso González, Carlos Manuel 
Ravelo García, Antonio Gabriel 
Alonso Hernández, Jesús Bernardino 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Based-handwriting recognition Word holistic analysis Graphometric features Off-line system Biometric identification
Fecha de publicación: 2020
Editor/a: 0941-0643
Proyectos: Generacion de Un Marco Unificado Para El Desarrollo de Patrones Biometricos de Comportamiento 
Publicación seriada: Neural Computing and Applications 
Resumen: The biometric identification is an important topic with applications in different fields. Among the different modalities, based-handwriting biometric is a very useful and extended modality, and the most known one is the signature. The use of handwritten texts is researched presenting a biometric system for identifying writers from their handwritten words. A set of feature-based graphometric information has been extracted from off-line handwritten words to implement an automatic biometric approach. Given the handwritten nature of the information and its great variability, a feature selection based on principal component analysis and neural network classifier has been proposed. A fusion block based on neural networks has been added in order to reduce the effect of the data variability due to an increase and stabilization of the accuracy. A dataset composed of 100 writers have been used for the experiments. A holdout cross-validation was applied and the accuracy reached between 99.80% and 100%
URI: http://hdl.handle.net/10553/43949
ISSN: 0941-0643
DOI: 10.1007/s00521-018-3461-x
Fuente: Neural Computing and Applications [ISSN 0941-0643], n. 32(20), p. 15733–15746
Colección:Artículos
Vista completa

Citas SCOPUSTM   

5
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

7
actualizado el 17-nov-2024

Visitas

184
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.