Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43949
Título: | Writer identification approach by holistic graphometric features using off-line handwritten words | Autores/as: | Vásquez, José L. Dutta, Malay Kishore Travieso González, Carlos Manuel Ravelo García, Antonio Gabriel Alonso Hernández, Jesús Bernardino |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Based-handwriting recognition Word holistic analysis Graphometric features Off-line system Biometric identification | Fecha de publicación: | 2020 | Editor/a: | 0941-0643 | Proyectos: | Generacion de Un Marco Unificado Para El Desarrollo de Patrones Biometricos de Comportamiento | Publicación seriada: | Neural Computing and Applications | Resumen: | The biometric identification is an important topic with applications in different fields. Among the different modalities, based-handwriting biometric is a very useful and extended modality, and the most known one is the signature. The use of handwritten texts is researched presenting a biometric system for identifying writers from their handwritten words. A set of feature-based graphometric information has been extracted from off-line handwritten words to implement an automatic biometric approach. Given the handwritten nature of the information and its great variability, a feature selection based on principal component analysis and neural network classifier has been proposed. A fusion block based on neural networks has been added in order to reduce the effect of the data variability due to an increase and stabilization of the accuracy. A dataset composed of 100 writers have been used for the experiments. A holdout cross-validation was applied and the accuracy reached between 99.80% and 100% | URI: | http://hdl.handle.net/10553/43949 | ISSN: | 0941-0643 | DOI: | 10.1007/s00521-018-3461-x | Fuente: | Neural Computing and Applications [ISSN 0941-0643], n. 32(20), p. 15733–15746 |
Colección: | Artículos |
Citas SCOPUSTM
5
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
7
actualizado el 17-nov-2024
Visitas
184
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.