Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43564
Título: | Using massive vehicle positioning data to improve control and planning of public road transport | Autores/as: | Padrón, Gabino García, Carmelo R. Quesada-Arencibia, A. Alayón, Francisco Pérez, Ricardo |
Clasificación UNESCO: | 120304 Inteligencia artificial 3327 Tecnología de los sistemas de transporte |
Palabras clave: | Mobile positioning systems Automated data collection systems Intelligent transportation systems Pattern recognition |
Fecha de publicación: | 2014 | Publicación seriada: | Sensors | Resumen: | This study describes a system for the automatic recording of positioning data for public transport vehicles used on roads. With the data provided by this system, transportation-regulatory authorities can control, verify and improve the routes that vehicles use, while also providing new data to improve the representation of the transportation network and providing new services in the context of intelligent metropolitan areas. The system is executed autonomously in the vehicles, by recording their massive positioning data and transferring them to remote data banks for subsequent processing. To illustrate the utility of the system, we present a case of application that consists of identifying the points at which vehicles stop systematically, which may be points of scheduled stops or points at which traffic signals or road topology force the vehicle to stop. This identification is performed using pattern recognition techniques. The system has been applied under real operating conditions, providing the results discussed in the present study. | URI: | http://hdl.handle.net/10553/43564 | ISSN: | 1424-8220 | DOI: | 10.3390/s140407342 | Fuente: | Sensors (Switzerland)[ISSN 1424-8220],v. 14 (4), p. 7342-7358 |
Colección: | Artículos |
Citas SCOPUSTM
8
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
7
actualizado el 17-nov-2024
Visitas
86
actualizado el 08-jun-2024
Descargas
120
actualizado el 08-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.