Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43564
Título: Using massive vehicle positioning data to improve control and planning of public road transport
Autores/as: Padrón, Gabino 
García, Carmelo R. 
Quesada-Arencibia, A. 
Alayón, Francisco 
Pérez, Ricardo 
Clasificación UNESCO: 120304 Inteligencia artificial
3327 Tecnología de los sistemas de transporte
Palabras clave: Mobile positioning systems
Automated data collection systems
Intelligent transportation systems
Pattern recognition
Fecha de publicación: 2014
Publicación seriada: Sensors 
Resumen: This study describes a system for the automatic recording of positioning data for public transport vehicles used on roads. With the data provided by this system, transportation-regulatory authorities can control, verify and improve the routes that vehicles use, while also providing new data to improve the representation of the transportation network and providing new services in the context of intelligent metropolitan areas. The system is executed autonomously in the vehicles, by recording their massive positioning data and transferring them to remote data banks for subsequent processing. To illustrate the utility of the system, we present a case of application that consists of identifying the points at which vehicles stop systematically, which may be points of scheduled stops or points at which traffic signals or road topology force the vehicle to stop. This identification is performed using pattern recognition techniques. The system has been applied under real operating conditions, providing the results discussed in the present study.
URI: http://hdl.handle.net/10553/43564
ISSN: 1424-8220
DOI: 10.3390/s140407342
Fuente: Sensors (Switzerland)[ISSN 1424-8220],v. 14 (4), p. 7342-7358
Colección:Artículos
miniatura
PDF
Adobe PDF (607,76 kB)
Vista completa

Citas SCOPUSTM   

8
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

7
actualizado el 17-nov-2024

Visitas

86
actualizado el 08-jun-2024

Descargas

120
actualizado el 08-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.