Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43078
Título: | Cepstrum feature selection for the classification of Sleep Apnea-Hypopnea Syndrome based on heart rate variability | Autores/as: | Ravelo García, Antonio Gabriel Navarro Mesa, Juan Luis Hernadez-Perez, E. Martín González, Sofía Isabel Quintana-Morales, P. Guerra-Moreno, I. Julia-Serda, G. |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | electrocardiography medical signal processing medical disorders sleep statistical analysis |
Fecha de publicación: | 2013 | Publicación seriada: | Computing in Cardiology | Conferencia: | 40th Annual Meeting on Computing in Cardiology (CinC) | Resumen: | Cepstrum Coefficients are analyzed in order to study its performance in Sleep Apnea Hypopnea Syndrome (SAHS) screening. A forward feature selection technique is applied in order to know for one thing, what cepstrum parameters can extract better information about the influence of breath sleep disorder on the heart rhythm, and on the other hand, trying to detect apneas based on the RR series obtained from the electrocardiogram (EKG). © 2013 CCAL. | URI: | http://hdl.handle.net/10553/43078 | ISBN: | 9781479908844 | ISSN: | 2325-8861 | Fuente: | Computing in Cardiology[ISSN 2325-8861],v. 40 (6713538), p. 959-962 |
Colección: | Actas de congresos |
Citas SCOPUSTM
13
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
10
actualizado el 25-feb-2024
Visitas
122
actualizado el 22-jun-2024
Descargas
24
actualizado el 22-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.