Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42928
Título: The Log-Lindley distribution as an alternative to the beta regression model with applications in insurance
Autores/as: Gómez Déniz, Emilio 
Sordo, Miguel A.
Calderín Ojeda, Enrique
Clasificación UNESCO: 12 Matemáticas
Palabras clave: Distribución
Fecha de publicación: 2014
Editor/a: 0167-6687
Publicación seriada: Insurance: Mathematics and Economics 
Resumen: In this paper a new probability density function with bounded domain is presented. The new distribution arises from the generalized Lindley distribution proposed by Zakerzadeh and Dolati (2010). This new distribution that depends on two parameters can be considered as an alternative to the classical beta distribution. It presents the advantage of not including any special function in its formulation. After studying its most important properties, some useful results regarding insurance and inventory management applications are obtained. In particular, in insurance, we suggest a special class of distorted premium principles based on this distribution and we compare it with the well-known power dual premium principle. Since the mean of the new distribution can be normalized to give a simple parameter, this new model is appropriate to be used as a regression model when the response is bounded, being therefore an alternative to the beta regression model recently proposed in the statistical literature.
URI: http://hdl.handle.net/10553/42928
ISSN: 0167-6687
DOI: 10.1016/j.insmatheco.2013.10.017
Fuente: Insurance: Mathematics and Economics[ISSN 0167-6687],v. 54, p. 49-57
Colección:Artículos
Vista completa

Citas SCOPUSTM   

124
actualizado el 01-dic-2024

Citas de WEB OF SCIENCETM
Citations

109
actualizado el 24-nov-2024

Visitas

21
actualizado el 28-may-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.