Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42882
Título: | GD: a measure based on information theory for attribute selection | Autores/as: | Lorenzo, Javier Hernández, Mario Mendez, Juan |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Machine learning Intelligent information retrieval Feature selection |
Fecha de publicación: | 1998 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 6th Ibero-American Congress on Artificial Intelligence (IBERAMIA 98) 6th Ibero-American Congress on Artificial Intelligence, IBERAMIA 1998 |
Resumen: | In this work a measure called GD is presented for attribute selection. This measure is defined between an attribute set and a class and corresponds to a generalization of the Mántaras distance that allows to detect the interdependencies between attributes. In the same way, the proposed measure allows to order the attributes by importance in the definition of the concept. This measure does not exhibit a noticeable bias in favor of attributes with many values. The quality of the selected attributes using the GD measure is tested by means of different comparisons with other two attribute selection methods over 19 datasets. | URI: | http://hdl.handle.net/10553/42882 | ISBN: | 978-3-540-64992-2 3540649921 |
ISSN: | 0302-9743 | DOI: | 10.1007/3-540-49795-1_11 | Fuente: | Coelho H. (eds) Progress in Artificial Intelligence — IBERAMIA 98. IBERAMIA 1998. Lecture Notes in Computer Science, vol 1484. Springer, Berlin, Heidelberg |
Colección: | Actas de congresos |
Citas SCOPUSTM
3
actualizado el 29-dic-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 25-feb-2024
Visitas
133
actualizado el 21-dic-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.