Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42879
Título: | Habituation based on spectrogram analysis | Autores/as: | Lorenzo, Javier Hernández, Mario |
Clasificación UNESCO: | 120304 Inteligencia artificial | Fecha de publicación: | 2002 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 8th Ibero-American Conference on Artifical Intelligence (IBERAMIA 02) 8th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2002 |
Resumen: | In this paper we present a habituation mechanism which includes a modification of the Stanley's habituation model with the addition of a stage based on spectrogram to detect temporal patterns in a signal and to obtain a measure of habituation to these patterns. This means that this measure shows a saturation process as the pattern is perceived by the system and when it disappears the measure drops. The use of the spectrogram simplifies the detection of the temporal patterns which can be detected with naive techniques. We have carried on some experiments both a synthetic signal and real signals like readings of a sonar in a mobile robot. | URI: | http://hdl.handle.net/10553/42879 | ISBN: | 978-3-540-36131-2 354000131X 9783540001317 |
ISSN: | 0302-9743 | DOI: | 10.1007/3-540-36131-6_91 | Fuente: | Garijo F.J., Riquelme J.C., Toro M. (eds) Advances in Artificial Intelligence — IBERAMIA 2002. IBERAMIA 2002. Lecture Notes in Computer Science, vol 2527. Springer, Berlin, Heidelberg |
Colección: | Actas de congresos |
Citas SCOPUSTM
1
actualizado el 17-nov-2024
Visitas
112
actualizado el 20-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.