Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42757
Título: Weak near convexity and smoothness of Banach spaces
Autores/as: Cabrera, I. J. 
Sadarangani, K. B. 
Clasificación UNESCO: 120203 Algebra y espacios de Banach
Palabras clave: Banach Space
Fecha de publicación: 2002
Publicación seriada: Archiv der Mathematik (Printed ed.) 
Resumen: In this paper we study the weak near convexity and smoothness in Banach spaces. These concepts are introduced by using the De Blasi measure of weak noncompactness which is the weak translation of the Hausdorff measure of noncompactness. The De Blasi measure of weak noncompactness fails the isometry invariance property and this fact makes that some results about the near convexity and smoothness in Banach spaces cannot be adapted in the weak version. Particularly, we prove that the weak near smoothness is a property which is transmitted to closed subspaces by using the classical double-limit criterion of Eberlein on the characterization of relatively weakly compact subsets. Moreover, we analyse the relationship between the weak near smoothness in the dual space and the weak near convexity in the original space and, finally, we study some classic Banach spaces in order to illustrate the introduced concepts.
URI: http://hdl.handle.net/10553/42757
ISSN: 0003-889X
DOI: 10.1007/s00013-002-8226-0
Fuente: Archiv der Mathematik[ISSN 0003-889X],v. 78, p. 126-134
Colección:Artículos
Vista completa

Citas SCOPUSTM   

6
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 15-dic-2024

Visitas

40
actualizado el 23-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.