Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42757
Campo DC Valoridioma
dc.contributor.authorCabrera, I. J.en_US
dc.contributor.authorSadarangani, K. B.en_US
dc.date.accessioned2018-11-21T10:58:55Z-
dc.date.available2018-11-21T10:58:55Z-
dc.date.issued2002en_US
dc.identifier.issn0003-889Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/42757-
dc.description.abstractIn this paper we study the weak near convexity and smoothness in Banach spaces. These concepts are introduced by using the De Blasi measure of weak noncompactness which is the weak translation of the Hausdorff measure of noncompactness. The De Blasi measure of weak noncompactness fails the isometry invariance property and this fact makes that some results about the near convexity and smoothness in Banach spaces cannot be adapted in the weak version. Particularly, we prove that the weak near smoothness is a property which is transmitted to closed subspaces by using the classical double-limit criterion of Eberlein on the characterization of relatively weakly compact subsets. Moreover, we analyse the relationship between the weak near smoothness in the dual space and the weak near convexity in the original space and, finally, we study some classic Banach spaces in order to illustrate the introduced concepts.en_US
dc.languageengen_US
dc.relation.ispartofArchiv der Mathematik (Printed ed.)en_US
dc.sourceArchiv der Mathematik[ISSN 0003-889X],v. 78, p. 126-134en_US
dc.subject120203 Algebra y espacios de Banachen_US
dc.subject.otherBanach Spaceen_US
dc.titleWeak near convexity and smoothness of Banach spacesen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1007/s00013-002-8226-0
dc.identifier.scopus0036002653-
dc.identifier.isi000174253400006
dc.contributor.authorscopusid14059653500-
dc.contributor.authorscopusid55964919000-
dc.identifier.eissn1420-8938-
dc.identifier.eissn1420-8938-
dc.description.lastpage134-
dc.identifier.issue2-
dc.description.firstpage126-
dc.relation.volume78-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid2610437
dc.contributor.daisngid298123
dc.contributor.wosstandardWOS:Cabrera, IJ
dc.contributor.wosstandardWOS:Sadarangani, KB
dc.date.coverdateFebrero 2002
dc.identifier.ulpgces
dc.description.jcr0,326
dc.description.jcrqQ3
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameCabrera Ortega,Ignacio José-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.