Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42446
Título: Biometric approach based on physiological human signals
Autores/as: Alemán-Soler, N. M.
Travieso, Carlos M. 
Guerra-Segura, E.
Alonso, Jesus B. 
Dutta, M. K.
Singh, A.
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Arduino
Biomedical signals
Biometric identification
e-Health
Neuroal Network, et al.
Fecha de publicación: 2016
Publicación seriada: 3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016
Conferencia: 3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016 
Resumen: This study presents an approach to use different biomedical signals in order to do biometric identification. The biomedical signals are captured using Arduino and Libelium platforms, what offers a low cost solution. The biomedical signals used are Electromyogram, Electrocardiogram and the Galvanic Skin Response. These signals are parametrized using well-known measures and Neural Networks are used as classifier in order to develop the user identification. The result of a success rate of 85.55% what is understood as a promising way to identify people by their biomedical signals.
URI: http://hdl.handle.net/10553/42446
ISBN: 9781467391979
DOI: 10.1109/SPIN.2016.7566783
Fuente: 3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016 (7566783), p. 681-686
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

10
actualizado el 01-dic-2024

Visitas

70
actualizado el 15-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.