Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42446
Título: | Biometric approach based on physiological human signals | Autores/as: | Alemán-Soler, N. M. Travieso, Carlos M. Guerra-Segura, E. Alonso, Jesus B. Dutta, M. K. Singh, A. |
Clasificación UNESCO: | 33 Ciencias tecnológicas | Palabras clave: | Arduino Biomedical signals Biometric identification e-Health Neuroal Network, et al. |
Fecha de publicación: | 2016 | Publicación seriada: | 3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016 | Conferencia: | 3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016 | Resumen: | This study presents an approach to use different biomedical signals in order to do biometric identification. The biomedical signals are captured using Arduino and Libelium platforms, what offers a low cost solution. The biomedical signals used are Electromyogram, Electrocardiogram and the Galvanic Skin Response. These signals are parametrized using well-known measures and Neural Networks are used as classifier in order to develop the user identification. The result of a success rate of 85.55% what is understood as a promising way to identify people by their biomedical signals. | URI: | http://hdl.handle.net/10553/42446 | ISBN: | 9781467391979 | DOI: | 10.1109/SPIN.2016.7566783 | Fuente: | 3rd International Conference on Signal Processing and Integrated Networks, SPIN 2016 (7566783), p. 681-686 |
Colección: | Actas de congresos |
Citas SCOPUSTM
10
actualizado el 01-dic-2024
Visitas
70
actualizado el 15-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.