Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42411
Título: Wind field probabilistic forecasting
Autores/as: Oliver, Albert 
Rodríguez, Eduardo 
Mazorra-Aguiar, Luis 
Clasificación UNESCO: 3322 Tecnología energética
Palabras clave: Numerical Weather Prediction
Singular Vectors
Multimodel Ensembles
Climate Forecasts
Daily Temperature, et al.
Fecha de publicación: 2018
Editor/a: Springer 
Publicación seriada: Green Energy and Technology 
Resumen: Probabilistic wind forecasting is a methodology to deal with uncertainties in numerical weather prediction models (NWP). In this chapter, we describe the need for ensemble forecasting, the different techniques used to generate the different initial conditions, and the operational ensemble models that are used nowadays in meteorological agencies. Then, we develop an ensemble method designed for the down-scaling wind model described in Chap. 4 coupled with the AROME-HARMONIE mesoscale model, a non-hydrostatic dynamic forecast model described in Chap. 5. As we have explained in Chap. 4, some parameters need to be estimated since we do not know its exact value. These parameters are, basically, the roughness length and the zero plane displacement (explained in Chap. 2), as well as the Gauss moduli parameter (a) used in the diagnostic wind model. This estimation is the main source of uncertainties in the model; therefore we will estimate some of these parameters using different forecast values of the AROME-HARMONIE. Finally, an example of the approach is applied in Gran Canaria island with a comparison of the ensemble results with experimental data from AEMET meteorological stations.
URI: http://hdl.handle.net/10553/42411
ISBN: 978-3-319-76875-5
ISSN: 1865-3529
DOI: 10.1007/978-3-319-76876-2_6
Fuente: Wind Field and Solar Radiation Characterization and Forecasting. Green Energy and Technology [ISSN 1865-3529] / Perez Richard (eds), p. 129-145, (Enero 2018)
Colección:Capítulo de libro
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

61
actualizado el 23-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.