Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42110
Título: | Second order variational optic flow estimation | Autores/as: | Alvarez, L. Castaño, C. A. García, M. Krissian, K. Mazorra, L. Salgado, Agustín Sánchez, J. |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes 120601 Construcción de algoritmos 120602 Ecuaciones diferenciales |
Palabras clave: | Particle Image Velocimetry Energy Function Motion Vector Regularization Term Angular Error |
Fecha de publicación: | 2007 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 11th International Conference on Computer Aided Systems Theory 11th International Conference on Computer Aided Systems Theory, EUROCAST 2007 |
Resumen: | In this paper we present a variational approach to accurately estimate the motion vector field in a image sequence introducing a second order Taylor expansion of the flow in the energy function to be minimized. This feature allows us to simultaneously obtain, in addition, an estimation of the partial derivatives of the motion vector field. The performance of our approach is illustrated with the estimation of the displacement vector field on the well known Yosemite sequence and compared to other techniques from the state of the art. | URI: | http://hdl.handle.net/10553/42110 | ISBN: | 9783540758662 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-540-75867-9_81 | Fuente: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 4739 LNCS, p. 646-653 | URL: | https://api.elsevier.com/content/abstract/scopus_id/38449101508 |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.