Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42010
Título: Seabed mapping in coastal shallow waters using high resolution multispectral and hyperspectral imagery
Autores/as: Marcello, Javier 
Eugenio, Francisco 
Martin, Javier 
Marqués, Ferran
Clasificación UNESCO: 220921 Espectroscopia
Palabras clave: Benthic mapping
Seagrass
Airborne hypespectral imagery
Worldview-2
Atmospheric correction, et al.
Fecha de publicación: 2018
Editor/a: 2072-4292
Proyectos: Procesado Avanzado de Datos de Teledetección Para la Monitorización y Gestión Sostenible de Recursos Marinos y Terrestres en Ecosistemas Vulnerables. 
Publicación seriada: Remote Sensing 
Resumen: Coastal ecosystems experience multiple anthropogenic and climate change pressures. To monitor the variability of the benthic habitats in shallow waters, the implementation of effective strategies is required to support coastal planning. In this context, high-resolution remote sensing data can be of fundamental importance to generate precise seabed maps in coastal shallow water areas. In this work, satellite and airborne multispectral and hyperspectral imagery were used to map benthic habitats in a complex ecosystem. In it, submerged green aquatic vegetation meadows have low density, are located at depths up to 20 m, and the sea surface is regularly affected by persistent local winds. A robust mapping methodology has been identified after a comprehensive analysis of different corrections, feature extraction, and classification approaches. In particular, atmospheric, sunglint, and water column corrections were tested. In addition, to increase the mapping accuracy, we assessed the use of derived information from rotation transforms, texture parameters, and abundance maps produced by linear unmixing algorithms. Finally, maximum likelihood (ML), spectral angle mapper (SAM), and support vector machine (SVM) classification algorithms were considered at the pixel and object levels. In summary, a complete processing methodology was implemented, and results demonstrate the better performance of SVM but the higher robustness of ML to the nature of information and the number of bands considered. Hyperspectral data increases the overall accuracy with respect to the multispectral bands (4.7% for ML and 9.5% for SVM) but the inclusion of additional features, in general, did not significantly improve the seabed map quality.
URI: http://hdl.handle.net/10553/42010
ISSN: 2072-4292
DOI: 10.3390/rs10081208
Fuente: Remote Sensing [ISSN 2072-4292], v. 10(8), 1208
Colección:Artículos
miniatura
pdf
Adobe PDF (12,08 MB)
Vista completa

Citas SCOPUSTM   

43
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

38
actualizado el 15-dic-2024

Visitas

126
actualizado el 15-jun-2024

Descargas

152
actualizado el 15-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.