Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42010
Campo DC Valoridioma
dc.contributor.authorMarcello, Javieren_US
dc.contributor.authorEugenio, Franciscoen_US
dc.contributor.authorMartin, Javieren_US
dc.contributor.authorMarqués, Ferranen_US
dc.date.accessioned2018-09-27T13:01:27Z-
dc.date.available2018-09-27T13:01:27Z-
dc.date.issued2018en_US
dc.identifier.issn2072-4292en_US
dc.identifier.urihttp://hdl.handle.net/10553/42010-
dc.description.abstractCoastal ecosystems experience multiple anthropogenic and climate change pressures. To monitor the variability of the benthic habitats in shallow waters, the implementation of effective strategies is required to support coastal planning. In this context, high-resolution remote sensing data can be of fundamental importance to generate precise seabed maps in coastal shallow water areas. In this work, satellite and airborne multispectral and hyperspectral imagery were used to map benthic habitats in a complex ecosystem. In it, submerged green aquatic vegetation meadows have low density, are located at depths up to 20 m, and the sea surface is regularly affected by persistent local winds. A robust mapping methodology has been identified after a comprehensive analysis of different corrections, feature extraction, and classification approaches. In particular, atmospheric, sunglint, and water column corrections were tested. In addition, to increase the mapping accuracy, we assessed the use of derived information from rotation transforms, texture parameters, and abundance maps produced by linear unmixing algorithms. Finally, maximum likelihood (ML), spectral angle mapper (SAM), and support vector machine (SVM) classification algorithms were considered at the pixel and object levels. In summary, a complete processing methodology was implemented, and results demonstrate the better performance of SVM but the higher robustness of ML to the nature of information and the number of bands considered. Hyperspectral data increases the overall accuracy with respect to the multispectral bands (4.7% for ML and 9.5% for SVM) but the inclusion of additional features, in general, did not significantly improve the seabed map quality.en_US
dc.languageengen_US
dc.publisher2072-4292
dc.relationProcesado Avanzado de Datos de Teledetección Para la Monitorización y Gestión Sostenible de Recursos Marinos y Terrestres en Ecosistemas Vulnerables.en_US
dc.relation.ispartofRemote Sensingen_US
dc.sourceRemote Sensing [ISSN 2072-4292], v. 10(8), 1208en_US
dc.subject220921 Espectroscopiaen_US
dc.subject.otherBenthic mappingen_US
dc.subject.otherSeagrassen_US
dc.subject.otherAirborne hypespectral imageryen_US
dc.subject.otherWorldview-2en_US
dc.subject.otherAtmospheric correctionen_US
dc.subject.otherSunglint correctionen_US
dc.subject.otherWater column correctionen_US
dc.subject.otherDimensionality reduction techniquesen_US
dc.subject.otherSVM classificationen_US
dc.subject.otherLinear unmixingen_US
dc.titleSeabed mapping in coastal shallow waters using high resolution multispectral and hyperspectral imageryen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/rs10081208en_US
dc.identifier.scopus85051674136-
dc.identifier.isi000443618100044-
dc.contributor.authorscopusid6602158797-
dc.contributor.authorscopusid6603605357-
dc.contributor.authorscopusid57199282278-
dc.contributor.authorscopusid57169697000-
dc.identifier.issue8-
dc.relation.volume10en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid702897-
dc.contributor.daisngid5242233-
dc.contributor.daisngid4911820-
dc.contributor.daisngid509358-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Marcello, J-
dc.contributor.wosstandardWOS:Eugenio, F-
dc.contributor.wosstandardWOS:Martin, J-
dc.contributor.wosstandardWOS:Marques, F-
dc.date.coverdateAgosto 2018en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,43
dc.description.jcr4,118
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.orcid0000-0002-0010-4024-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
crisitem.author.fullNameEugenio González, Francisco-
crisitem.author.fullNameMartín Abasolo, Javier-
crisitem.project.principalinvestigatorMarcello Ruiz, Francisco Javier-
Colección:Artículos
miniatura
pdf
Adobe PDF (12,08 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.