Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41596
Título: Bayesian meta-analysis: The role of the between-sample heterogeneity
Autores/as: Moreno, Elías
Vázquez-Polo, Francisco José 
Negrín, Miguel Ángel 
Clasificación UNESCO: 5312 Economía sectorial
Palabras clave: Clustering
copula
meta-analysis
product partition model
Fecha de publicación: 2018
Publicación seriada: Statistical Methods in Medical Research 
Resumen: The random effect approach for meta-analysis was motivated by a lack of consistent assessment of homogeneity of treatment effect before pooling. The random effect model assumes that the distribution of the treatment effect is fully heterogenous across the experiments. However, other models arising by grouping some of the experiments are plausible. We illustrate on simulated binary experiments that the fully heterogenous model gives a poor meta-inference when fully heterogeneity is not the true model and that the knowledge of the true cluster model considerably improves the inference. We propose the use of a Bayesian model selection procedure for estimating the true cluster model, and Bayesian model averaging to incorporate into the meta-analysis the clustering estimation. A well-known meta-analysis for six major multicentre trials to assess the efficacy of a given dose of aspirin in post-myocardial infarction patients is reanalysed.
URI: http://hdl.handle.net/10553/41596
ISSN: 1477-0334
DOI: 10.1177/0962280217709837
Fuente: Statistical Methods In Medical Research[ISSN 0962-2802],v. 27 (12), p. 3643-3657, (Diciembre 2018)
URL: https://api.elsevier.com/content/abstract/scopus_id/85033232427
Colección:Artículos
Vista completa

Citas SCOPUSTM   

13
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

12
actualizado el 15-dic-2024

Visitas

57
actualizado el 16-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.