Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41508
Título: Shape optimized inclined single and double wall wave barriers for ground vibration mitigation
Autores/as: Bordón, J. D.R. 
Van hoorickx, C.
Aznárez, J. J. 
Schevenels, M.
Maeso, O. 
Lombaert, G.
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Wave barrier
Shape optimization
Boundary Element Method
Shape sensitivity
Analytical sensitivity
Fecha de publicación: 2018
Proyectos: Avances en El Desarrollo de Modelos Numéricos Para la Caracterización Dinámica de Cimentaciones Para Aerogeneradores 
Influencia de Los Fenómenos de Interacción Suelo-Estructura en la Respuesta Sísmica de Aerogeneradores Marinos 
Publicación seriada: Soil Dynamics and Earthquake Engineering 
Resumen: Stiff wave barriers are capable of reducing the transmission of ground vibrations. Most designs consist of a single vertical wall, although double walls are also being considered. This paper investigates the shape optimization (position, inclination, length and thickness) of these topologies in a two-dimensional setting, for a point source and a point receiver placed symmetrically with respect to the design domain. Three types of sources are studied: a single-frequency source, a broadband source and a harmonic source within a given frequency range. An economical constraint on the maximum material use is considered. A multi-region BEM methodology is used for evaluating the objective function and its gradient. Analytical expressions are presented for the sensitivities, providing a very effective simulation tool for this type of problem. It is found that significant improvement can be achieved by repositioning and inclining the walls when compared to the reference cases. It is also found that optimized double wall barriers outperform single wall barriers. The improvement is insignificant for sources which generate Rayleigh wavelengths similar to the design domain depth, but it greatly increases as frequency increases and the penetration depth decreases.
URI: http://hdl.handle.net/10553/41508
ISSN: 0267-7261
DOI: 10.1016/j.soildyn.2018.04.035
Fuente: Soil Dynamics and Earthquake Engineering [ISSN 0267-7261], v. 112, p. 215-231
Colección:Artículos
Adobe PDF (2,28 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.