Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41436
Título: Non-email spam and machine learning-based anti-spam filters: trends and some remarks
Autores/as: Cabrera-León, Ylermi 
García Báez, Patricio 
Suárez-Araujo, Carmen Paz 
Clasificación UNESCO: 3325 Tecnología de las telecomunicaciones
120304 Inteligencia artificial
Palabras clave: Spam filtering
Non-email spam
Social spam
Mobile spam
SMS spam, et al.
Fecha de publicación: 2018
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 16th International Conference on Computer Aided Systems Theory, (EUROCAST 2017) 
Resumen: Electronic spam, or unsolicited and undesired messages sent massively, is one of the threats that affects email and other media. The high volume and ratio of email spam have generated enormous time and economic losses. Due to this, many different email anti-spam defenses have been used. This translated into more complex spams in order to surpass them. Moreover, the spamming business moved to the less protected yet quite profitable non-email media because of the numerous potential targets that results from their extensive usage. Since that moment, spams in these media have increased rapidly in quantity, sophistication and danger, especially in the most popular ones: Instant Messaging, SMS and social media. Therefore, in this paper some of the characteristics and statistics of instant spam, mobile spam and social spam are exposed. Then, an overview of anti-spam techniques developed during the last decade to fight these new spam trends is presented, focusing on hybrid and Machine Learning-based approaches. We conclude with some possible future evolutionary steps of both non-email spams and anti-spams.
URI: http://hdl.handle.net/10553/41436
ISBN: 978-3-319-74717-0
ISSN: 0302-9743
DOI: 10.1007/978-3-319-74718-7_30
Fuente: Computer Aided Systems Theory – EUROCAST 2017. EUROCAST 2017. Lecture Notes in Computer Science, v. 10671 LNCS, p. 245-253
Colección:Capítulo de libro
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.