Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/41395
Título: | Supervised neural computing solutions for fluorescence identification of benzimidazole fungicides. Data and decision fusion strategies | Autores/as: | Suárez-Araujo, Carmen Paz García Báez, Patricio Sánchez Rodríguez, Álvaro Santana-Rodrríguez, José Juan |
Clasificación UNESCO: | 251002 Oceanografía química 2301 química analítica 3308 Ingeniería y tecnología del medio ambiente |
Palabras clave: | Artificial neural networks Data fusion Ensembles Environment Fluorescence spectrometry, et al. |
Fecha de publicación: | 2016 | Publicación seriada: | Environmental Science and Pollution Research | Conferencia: | 1st International Caparica Conference on Pollutant Toxic Ions and Molecules (PTIM) | Resumen: | Benzimidazole fungicides (BFs) are a type of pesticide of high environmental interest characterized by a heavy fluorescence spectral overlap which complicates its detection in mixtures. In this paper, we present a computational study based on supervised neural networks for a multi-label classification problem. Specifically, backpropagation networks (BPNs) with data fusion and ensemble schemes are used for the simultaneous resolution of difficult multi-fungicide mixtures. We designed, optimized and compared simple BPNs, BPNs with data fusion and BPNs ensembles. The information environment used is made up of synchronous and conventional BF fluorescence spectra. The mixture spectra are not used in the training nor the validation stage. This study allows us to determine the convenience of fusioning the labels of carbendazim and benomyl for the identification of BFs in complex multi-fungicide mixtures. | URI: | http://hdl.handle.net/10553/41395 | ISSN: | 0944-1344 | DOI: | 10.1007/s11356-016-7129-8 | Fuente: | Environmental Science and Pollution Research[ISSN 0944-1344],v. 23, p. 24547-24559 |
Colección: | Artículos |
Citas SCOPUSTM
4
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 17-nov-2024
Visitas
59
actualizado el 17-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.