Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/40333
Título: Soft biometric attributes in the wild: case study on gender classification
Autores/as: Castrillón-Santana, Modesto 
Lorenzo Navarro, José Javier 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Face Recognition
Fusion
Identification
Surveillance
Prediction, et al.
Fecha de publicación: 2017
Resumen: Soft biometrics has become an active field of research, as it provides useful attributes to assist in recognition systems. Its fusion with strong traits may serve to achieve reasonable recognition rates in less cooperative scenarios. These attributes can also be used to speed up database searches, or to describe an anonymous subject within a demographic group. Agreeing with recent research trends on the need to evaluate biometric systems using “in the wild” datasets, the current state-of-the-art in the emerging field of soft biometrics is presented, together with proposals and results on the particular problem of gender classification “in the wild”.
URI: http://hdl.handle.net/10553/40333
ISSN: 9780081007051
DOI: 10.1016/B978-0-08-100705-1.00007-5
Fuente: Human Recognition in Unconstrained Environments, Chapter 7. Academic Press, p. 145-176, ISBN 9780081007051
Colección:Artículos
Vista completa

Citas SCOPUSTM   

2
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

171
actualizado el 26-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.