Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/40194
Título: Lightweight parametric design optimization for 4D printed parts
Autores/as: Paz Hernández, Rubén 
Pei, Eujin
Monzón Verona, Mario Domingo 
Ortega García,Fernando 
Suárez García, Luis Adargoma 
Clasificación UNESCO: 331324 Maquinaria de impresión y reproducción
3313 Tecnología e ingeniería mecánicas
Palabras clave: Finite element analysis (FEA)
Genetic algorithms (GAs)
Kriging
Lightweight design optimization
Shape memory polymers (SMPs), et al.
Fecha de publicación: 2017
Publicación seriada: Integrated Computer-Aided Engineering 
Resumen: 4D printing is a technology that combines the capabilities of 3D printing with materials that can transform its geometry after being produced (e.g. Shape Memory Polymers). These advanced materials allow shape change by applying different stimulus such as heating. A 4D printed part will usually have 2 different shapes: a programmed shape (before the stimulus is applied), and the original shape (which is recovered once the stimulus has been applied). Lightweight parametric optimization techniques are used to find the best combination of design variables to reduce weight and lower manufacturing costs. However, current optimization techniques available in commercial 3D CAD software are not prepared for optimization of multiple shapes. The fundamental research question is how to optimize a design that will have different shapes with different boundary conditions and requirements. This paper presents a new lightweight parametric optimization method to solve this limitation. The method combines the Latin Hypercube design of experiments, Kriging metamodel and specifically designed genetic algorithms. The optimization strategy was implemented and automated using a CAD software. This method recognizes both shapes of the part as a single design and allows the lightweight parametric optimization to retain the minimum mechanical properties for both shapes.
URI: http://hdl.handle.net/10553/40194
ISSN: 1069-2509
DOI: 10.3233/ICA-170543
Fuente: Integrated Computer-Aided Engineering [ISSN 1069-2509], v. 24 (3), p. 225-240, (2017)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.