Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/38078
Título: | Corner detection using the affine morphological scale space | Autores/as: | Alvarez, Luis | Clasificación UNESCO: | 120601 Construcción de algoritmos 120602 Ecuaciones diferenciales 120326 Simulación 220990 Tratamiento digital. Imágenes |
Palabras clave: | Affine scale space Corner detection Morphology |
Fecha de publicación: | 2017 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 6th International Conference on Scale Space and Variational Methods in Computer Vision (SSVM) 6th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2017 |
Resumen: | We introduce a method for corner estimation based on the affine morphological scale space (AMSS). Using some explicit known formula about corner evolution across AMSS, proven by Alvarez and Morales in 1997, we define a morphological cornerness measure based on the expected evolution of an ideal corner across AMSS. We define a new procedure to track the corner motion across AMSS. To evaluate the accuracy of the method we study in details the results for a collection of synthetic corners with angles from 15 to 160°. We also present experiments in real images and we show that the proposed method can also automatically handle the case of multiple junctions. | URI: | http://hdl.handle.net/10553/38078 | ISBN: | 978-3-319-58770-7 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-319-58771-4_3 | Fuente: | Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science, v. 10302 LNCS, p. 29-40 |
Colección: | Capítulo de libro |
Citas SCOPUSTM
3
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 15-dic-2024
Visitas
147
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.