Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/35697
Título: | A combined voxel and particle filter-based approach for fast obstacle detection and tracking in automotive applications | Autores/as: | Morales, Nestor Toledo, Jonay Acosta, Leopoldo Sanchez-Medina, Javier |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Motion estimation Object tracking Artificial intelligence Autonomous vehicles Sensor fusion, et al. |
Fecha de publicación: | 2017 | Publicación seriada: | IEEE Transactions on Intelligent Transportation Systems | Resumen: | In this paper, a new method for real-time detection, motion estimation, and tracking of generic obstacles using just a 3-D point cloud and odometry information as input is presented. In this approach, a simplification of the world is done using voxels, supported by a particle filter-based 3-D object segmentation and a motion estimation scheme. That combination of techniques leverages a fast and reliable object detection, providing also motion speed and direction information. Four detailed studies have been performed in order to assess the suitability of the method, two of them related to the parameterization of the method and its input point cloud. Another one compares the tracking and detection results with other state-of-the-art methods. Last tests are intended for the characterization of the execution times required. Results are encouraging, with a high detection rate, low error rate, and real-time capable computing performance. In the attached video, it is possible to observe the behavior of the method, both using a stereovision and a light-detection and ranging generated point clouds as an input. | URI: | http://hdl.handle.net/10553/35697 | ISSN: | 1524-9050 | DOI: | 10.1109/TITS.2016.2616718 | Fuente: | IEEE Transactions on Intelligent Transportation Systems[ISSN 1524-9050],v. 18 (7725942), p. 1824-1834 |
Colección: | Artículos |
Citas SCOPUSTM
22
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
17
actualizado el 17-nov-2024
Visitas
115
actualizado el 31-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.