Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/35415
Título: Low-noise plasmonic nanopore biosensors for single molecule detection at elevated temperatures
Autores/as: Crick, Colin R.
Albella Echave, Pablo 
Kim, Hyung-Jun
Ivanov, Aleksandar P.
Kim, Ki-Bum
Maier, Stefan A.
Edel, Joshua B.
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Field enhancement
Nanoplasmonics
Nanopore
Plasmonics
Temperature control, et al.
Fecha de publicación: 2017
Publicación seriada: ACS Photonics 
Resumen: Advanced single molecular analysis is a key stepping stone for the rapid sensing and characterization of biomolecules. This will only be made possible through the implementation of versatile platforms, with high sensitivities and the precise control of experimental conditions. The presented work details an advancement of this technology, through the development of a low-noise Pyrex/silicon nitride/gold nanopore platform. The nanopore is surrounded by a plasmonic bullseye structure and provides targeted and controllable heating via laser irradiation, which is directed toward the center of the pore. The device architecture is investigated using multiwavelength laser heating experiments and individual DNA molecules are detected under controlled heating. The plasmonic features, optimized through numerical simulations, are tuned to the wavelength of incident light, ensuring a platform that provides substantial heating with high signalto-noise.
URI: http://hdl.handle.net/10553/35415
ISSN: 2330-4022
DOI: 10.1021/acsphotonics.7b00825
Fuente: ACS Photonics [ISSN 2330-4022], v. 4 (11), p. 2835-2842
Colección:Artículos
Vista completa

Citas SCOPUSTM   

36
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

33
actualizado el 15-dic-2024

Visitas

49
actualizado el 24-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.