Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/35398
Título: | Fully PolSAR image classification using machine learning techniques and reaction-diffusion systems | Autores/as: | Gomez, Luis Alvarez, Luis Mazorra Aguiar, Luis Frery, Alejandro C. |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes 120601 Construcción de algoritmos 120326 Simulación 120602 Ecuaciones diferenciales |
Palabras clave: | Image processing Image analysis Classification Speckle SAR polarimetry |
Fecha de publicación: | 2017 | Publicación seriada: | Neurocomputing | Resumen: | In this paper, we study the problem of supervised Fully PolSAR (polarimetric synthetic aperture radar) image classification. We estimate a complex Wishart model distribution for each class using training data, and we use such models to design a new classification procedure based on a diffusion-reaction equation. The method relies on simultaneously filtering and classifying pixels within the image. The diffusion term smooths the patches within the image, and the reaction term tends to move the pixel values towards the closest (in the sense of stochastic distances) representative class. We present a detailed study of the method accuracy using both simulated and true data, and we provide optimum parameters for its use. We show that the proposed method outperforms the results obtained using maximum likelihood and usual stochastic distance classification methods. | URI: | http://hdl.handle.net/10553/35398 | ISSN: | 0925-2312 | DOI: | 10.1016/j.neucom.2016.08.140 | Fuente: | Neurocomputing[ISSN 0925-2312],v. 255, p. 52-60 |
Colección: | Artículos |
Citas SCOPUSTM
26
actualizado el 01-dic-2024
Citas de WEB OF SCIENCETM
Citations
20
actualizado el 24-nov-2024
Visitas
168
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.