Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/35398
Título: Fully PolSAR image classification using machine learning techniques and reaction-diffusion systems
Autores/as: Gomez, Luis 
Alvarez, Luis 
Mazorra Aguiar, Luis
Frery, Alejandro C. 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
120601 Construcción de algoritmos
120326 Simulación
120602 Ecuaciones diferenciales
Palabras clave: Image processing
Image analysis
Classification
Speckle
SAR polarimetry
Fecha de publicación: 2017
Publicación seriada: Neurocomputing 
Resumen: In this paper, we study the problem of supervised Fully PolSAR (polarimetric synthetic aperture radar) image classification. We estimate a complex Wishart model distribution for each class using training data, and we use such models to design a new classification procedure based on a diffusion-reaction equation. The method relies on simultaneously filtering and classifying pixels within the image. The diffusion term smooths the patches within the image, and the reaction term tends to move the pixel values towards the closest (in the sense of stochastic distances) representative class. We present a detailed study of the method accuracy using both simulated and true data, and we provide optimum parameters for its use. We show that the proposed method outperforms the results obtained using maximum likelihood and usual stochastic distance classification methods.
URI: http://hdl.handle.net/10553/35398
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2016.08.140
Fuente: Neurocomputing[ISSN 0925-2312],v. 255, p. 52-60
Colección:Artículos
Vista completa

Citas SCOPUSTM   

26
actualizado el 01-dic-2024

Citas de WEB OF SCIENCETM
Citations

20
actualizado el 24-nov-2024

Visitas

168
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.