Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/35380
Título: A methodology for the multi-objective shape optimization of thin noise barriers
Autores/as: Toledo, R. 
Aznárez, J. J. 
Greiner, D. 
Maeso, O. 
Clasificación UNESCO: 12 Matemáticas
120601 Construcción de algoritmos
220101 Propiedades acústicas de los sólidos
Palabras clave: Thin noise barriers
Acoustic efficiency
Shape optimization
Evolutionary multiobjective optimization
Dual boundary element formulation
Fecha de publicación: 2017
Publicación seriada: Applied Mathematical Modelling 
Resumen: The approach of this paper is based on the evolutionary multi-objective optimization (EMO) of very thin noise barrier models with improved performance idealized as single wire designs. To assume such a simplification of reality, the dual boundary element (DBE) formulation for assessing the acoustic efficiency arises as the most appropriate strategy involving BE to avoid drawbacks associated with the exclusive implementation of the standard formulation (SBE). The 2D analysis performed in this work focuses on the simultaneous optimization of two objectives in conflict using the Non-dominated Sorting Genetic Algorithm (NSGA-II): the maximization of noise attenuation and the minimization of the amount of material used in manufacturing the barrier, represented by the overall length of its elements (this function is, closely related to the final cost of the device). Under this framework, two optimization strategies are compared for each model with equal number of fitness evaluations: (1) when considering a random initial population and (2) when including the best single-objective optimal design in the initial population. The results obtained show wide and uniformly spread-out non-dominated fronts, reflected in the geometric diversity featured by optimal designs; statistical analysis confirm the advantages of the latter initial population strategy.
URI: http://hdl.handle.net/10553/35380
ISSN: 0307-904X
DOI: 10.1016/j.apm.2017.06.020
Fuente: Applied Mathematical Modelling[ISSN 0307-904X],v. 50, p. 656-675
Colección:Artículos
Vista completa

Citas SCOPUSTM   

8
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

8
actualizado el 15-dic-2024

Visitas

79
actualizado el 24-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.