Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/35345
Título: | Myoelectronic signal-based methodology for the analysis of handwritten signatures | Autores/as: | Carmona Duarte, María Cristina Sanchez De Torres Peralta, Rafael Diaz Cabrera, Moises Ferrer Ballester, Miguel Ángel Martin Rincon, Marcos |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Handwritten signatures EMG Bio-medical signal processing |
Fecha de publicación: | 2017 | Proyectos: | Generacion de Un Marco Unificado Para El Desarrollo de Patrones Biometricos de Comportamiento | Publicación seriada: | Human Movement Science | Resumen: | With the overall aim of improving the synthesis of handwritten signatures, we have studied how muscle activation depends on handwriting style for both text and flourish. Surface electromyographic (EMG) signals from a set of twelve arm and trunk muscles were recorded in synchronization with handwriting produced on a digital Tablet. Correlations between these EMG signals and handwritten trajectory signals were analyzed so as to define the sequence of muscles activated during the different parts of the signature. Our results establish a correlation between the speed of the movement, stroke size, handwriting style and muscle activation. Muscle activity appeared to be clustered as a function of movement speed and handwriting style, a finding which may be used for filter design in a signature synthesizer. | URI: | http://hdl.handle.net/10553/35345 | ISSN: | 0167-9457 | DOI: | 10.1016/j.humov.2017.07.002 | Fuente: | Human Movement Science [ISSN 0167-9457], v. 55, p. 18-30 |
Colección: | Artículos |
Citas SCOPUSTM
8
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
8
actualizado el 15-dic-2024
Visitas
77
actualizado el 24-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.