Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/35339
Título: Predictive coalescence modeling of particles from different polymers: application to PVDF and PMMA pair
Autores/as: Aid, Sara
Eddhahak, Anissa
Ortega, Zaida 
Froelich, Daniel
Tcharkhtchi, Abbas
Clasificación UNESCO: 3313 Tecnología e ingeniería mecánicas
Fecha de publicación: 2017
Publicación seriada: Journal of Materials Science 
Resumen: This paper aims to study the coalescence phenomenon of two different polymers PVDF and PMMA. The paper is divided in two parts: the first part is devoted to the experimental work, and the second one focuses on the modeling of the coalescence phenomenon. The first step was a physicochemical and rheological characterization. Then, the coalescence tests have been performed on droplets derived from PVDF and PMMA polymers using a polarized light optical microscope combined with a hot stage. The effect of several significant parameters like temperature and particle size was investigated. The second part of this study is focused on the modeling of the coalescence phenomenon based on the well-known Bellehumeur model. The latter has been commonly used to describe the coalescence phenomenon between identical grains. The novelty of the present work consists in the extension of the coalescence model to wider describe the coalescence phenomenon between grains of different polymers. In addition, probabilistic analysis was performed in order to investigate the effect of the parameters governing the coalescence model, namely the viscosity, the surface tension and the relaxation time. The results have shown a good compromise between the experimental results and the predictive generalized Bellehumeur model.
URI: http://hdl.handle.net/10553/35339
ISSN: 0022-2461
DOI: 10.1007/s10853-017-1302-4
Fuente: Journal of Materials Science[ISSN 0022-2461],v. 52, p. 11725-11736
Colección:Artículos
Vista completa

Citas SCOPUSTM   

11
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

10
actualizado el 17-nov-2024

Visitas

82
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.